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SIMILAR SOLUTIONS OF THE BOUNDARY LAYER
EQUATIONS FOR PURELY VISCOUS
NON-NEWTONIAN FLUIDS

By C. Sinclair Wells, dJr.

SUMMARY |

The boundary layer equations for flows of purely viscous non-Newtonian !
fluids are investigated for the purpose of obtaining all possible conditions |
for which similar solutions exist. Both steady and unsteady flows are in-
vestigated. The momentum transport model is the Ostwald-de Waele (power law)
formulation which predicts shear-thinning, shear-thickening, and the special
case of Newtonian fluids. The similar solutions obtained represent, in all
cases, generalizations of boundary layer flows of Newtonian fluids. The
solutions are discussed with respect to application to physical flows. Some
of the more familiar flows represented are: steady flow over a flat plate,

a wedge, and a stagnation region; steady flow in a convergent or divergent
channel; and impulsively started flow over an infinite flat plate and a
semi-infinite flat plate.

INTRODUCTION

A large portion of boundary layer theory for Newtonian fluids is based
on exact solutions which are characterized by affine (linearly transformed in
terms of the normal coordinate) boundary layer velocity profiles. These are
generally called similar solutions., The practical value of such solutions
depends on whether they represent or approximate physical body shapes and
flows. Although most of these solutions were obtained by a direct technique
for a particular situation, it seems worthwhile to mathematically establish
the finite number of conditions which will enable similar solutions to be ob-
tained. After this has been done, the conditions required to produce similar
solutions can be investigated with respect to their approximation of physical
flows and body shapes, and numerical solutions can be obtained for those cases
of physical interest. These conditions for two-dimensional, laminar, boundary
layer flows of Newtonian fluids have been recently investigated by Fenter
(reference 1), It is the purpose of this paper to apply this technique to
establishing end investigating all possible conditions for similar solutions
for a useful class of non-Newtonian fluids.

The technique is that of treating what Fenter calls the inverse problem;
that is, manipulating the general boundary layer equations to find the con-
ditions under which mathematical similarity exists. The existence of simi-
larity, defined as the existence of affine velocity profiles, implies that




the fluid velocity and the spatial and temporal coordinates can be transformed
so that the problem is reduced to one involving a single independent variable.
The partial differential equation for the stream function then reduces to an
ordinary differential equation which can be solved readily. An historical
example of a treatment of the inverse problem is that by Falkner and Skan
(reference 2) where a family of steady flow conditions producing similarity
was found. This investigation can be contrasted with two examples of the
direct approach: (1) the Blasius solution for the steady boundary flow on

a flat plate (reference 3) (the Blasius solution is also a special case of
the Falkner-Skan family of solutions), and (2) the classical Rayleigh problem
for unsteady boundary layer flow on an infinite flat plate started impulsively
from rest (reference 4).

SYMBOLS

a constant of proportionality (defined by equation 4)
f transformed stream function
g x-dependent factor in inviscid velocity (defined by equation 12)
I, Ip, I, Invariants of A
L characteristic body length
n non-Newtonian flow index (defined by equation 4)
P isotropic static pressure

2-n.n
Ro Reynolds number, P Ub L

n a

u local velocity in the x-direction
U velocity at the edge of the boundary layer
Ub reference velocity
U°° t-dependent factor in inviscid velocity (defined by equation 12)
v local velocity in the y-direction
x coordinate along the surface
y coordinate normal to the surface

t time



shear stress

=l

Z\ rate of deformation tensor

m viscosity (defined by equation 1)

He effective viscosity (defined by equation 2)
o) density

¥ stream function

4| similarity variable (defined by equation 15)
¢ function of x and t (defined by equation 15)

FLUID MODEL

In order to describe any fluid, it must be possible to write its stress
tensor, 7, as a function of known variables!. For Newtonian fluids, this is
easily done:

- -
= =
T

= WA, (1)

where A is the "rate of deformation tensor" with cartesian components

By = vy /) + (v,/3x,)
and p is the coefficient of viscosity.

The coefficient gf viscosity depends on the local temperature and pressure
but not on ¥ or A.

The formulation of ¥ for non-Newtonian fluids is, in general, a complex
problem and awaits a well-developed theoretical basis. The description of
non-Newtonian fluids is also hampered by the lack of experimental techniques
to evaluate various analytical models. Two examples of general fluid models

which are based on theoretical considerations but lack sufficient experimental

informaetion to relate them to real fluids are: (1) a three-constant model
suggested by Oldroyd (reference 5) for non-Newtonian fluids which exhibit

elasticity, and (2) a model for non-Newtonian fluids that do not exhibit elas-

ticity which features two scalar functions of A - the effective viscogity and
the "cross viscosity" (references 6, T).

1 A discussion of the notation and operations used for second-order tensors
is given in reference 8, pp. 726-T731.
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Lacking a usable model based on theoretical considerations, it is neces-
sary to formulate phenomenological models which can be used in the equations
of motion. These models must, however, obey the laws _of tensor transformation.
Keeping this in mind, it is possible to relate ¥ and A by means of an effec-
tive viscosity (reference 8), for fluids which are purely viscous (no elas-
ticity or anisotropic normal stresses), by

T=pd (2)
vwhere u_, & scalar, is a function of Z as well as a function of temperature

and pressure. In order for pe to be a scalar function of the tensor A it must
depend only on the invariants of A, which are,

H
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I, can be shown to be equal to zero for an incompressible fluid and I_ is
iéentically zero for a two-dimensional flow. Therefore, for two dimeRsional
flow of an incompressible non-Newtonian fluid characterized by equation (2),
the stress tensor is given by

7= u(1,)

(3)

]

At this point several choices of empirical relations for I_ are availlable.
Due to its convenient form and the fact that it represents a lafge number of
fluids very well, the Ostwald-de Waele (power-law) model is chosen:

1 %,5 jh-1
n(1,) = a| |5 &4 | (@ >0), (&)
where A:A denotes the scalar product of two tensors, Eguation (4+) can be com-
bined with equation (3) to give an expression for the shear stress to be con-
sidered in the boundary layer equations:

u|?? du
Tyx:{a

oy ¥ [, (5)
where Tyy is the shear stress in the x-direction due to a velocity gradient
in the y-direction. If, in addition, the velocity gradient is always positive,
as for boundary layer flows, equation (5) can be rewritten as

Tyx T2 <%ui >n' (6)




For values of n less than one, the flow can be described as shear-thinning;
and for n greater than one, the flow is shear-thickening. The ranges of values
of n are also known, in a less physically descriptive sense, as pseudoplastic
and dilatant, respectively., For n = 1 the expression describes a Newtonian
fluid with a = u.

Use of the power-law relation given by equation (6) has become well ac-
cepted as descriptive of many real fluids. In particular, Schowalter (reference
9) and Acrivos (reference 10) have used the power-law relation to develop simi-
lar solutions for steady, two dimensional boundary layer flows which will be
shown to)be special cases of the general analyses to follow (see Solutions #l,
2, and 3).

ANALYSIS

As mentioned above, the procedure will be to normalize the fluid velocity
and the temporal and spatial coordinates and, using the classical boundary
layer equations, to write the partial differential equation for the stream
function. The problem then will be that of determining the form of a single
variable which will allow the transformation of the partial differential
equation for the stream function into an ordinary differential equation in
terms of a new stream function and the single variable. Once this equation
and the appropriate boundary conditions are written, and the significance of
the individual terms noted, it will be possible to systematically consider the
various conditions which must be satisfied to obtain similar solutions.

The system of equations considered are those credited to Prandtl and must
therefore be accompanied by his postulation of a thin boundary layer. For an
incompressible, laminar, two-dimensional, thin boundary layer - without regard
to the form of the momentum flux term - the continuity and momentum equations
are

NETET T R (7)

where x and y are coordinates along and normal to the surface of the body,
respectively. These coordinates are curvilinear, in general, but owing to
the thin boundary layer assumption the equations can be written in their rec-
tilinear forms. The velocities along and normal to the surface of the body
are given by u and v, respectively. By substituting equation (6) for the
momentum flux, the basic equations are written wholly in terms of gradients
to give



dg ™y
g

+u§+v%= -%{%+§[a(§u§>n]} (8)

dp

4

At this point it is convenient to make the variables non-dimensional with
the relations,

- x _ ¥ _ W _ u _ v = L
x=L, y=L, t="", u=U v=U, U U, >

where L is a characteristic length of the body and Uy is a constant reference
velocity. The momentum equation for the x-direction also can be made more con-
venient by applying the unsteady Bernoulli equation to the outer edge of the
boundary layer, as well as applying the momentum equation in the y-direction,

1 3% _ U
p & - % U

where U is the velocity at the outer edge of the boundary layer. The substi-
tutions give

(9)
%% + T g% + v g% = gg + Eg <5;> (g;:>

where

The dimensionless stream function, which satisfies the continuity equation,
now can be defined as

- d ¥ - v
u = y—_ v = _& ’
where ¥ is related to the ordinary stream function by

¥ o= L
\p“‘ Lc
o




Equation (9) then becomes
I}
ot

\lfﬁ + \lfs;\lfﬁ - W}—{{’ﬁ

s TR e B (g g (10)

where each subscript indicates partial differentation with respect to that
variable,

Three boundary conditions common to all boundary layer problems can be
written immediately,

(11)

--'—»-ﬁ a ————— -
’l’y S Yy ©

Other boundary conditions needed to obtain a solution for a particular physical
situation will be determined by the physical situation and will be discussed
individually later.

Thus, the first step in the plan to obtain all possible solutions has been
accomplished. Equations (10) and (11) give the differential equdtion and bound-
ary conditions which define the problem in its most general form,

The analysis can be simplified if the velocity at the edge of the boundary
layer can be considered to have the form,

U (i: JE') = ﬁw (ﬁ) g (i) » (12)

which is valid if the inviscid velocity field is irrotational. Irrotationality
is proved if at some time each element of fluid is moving in an irrotational
manner. Since only the case of a spatially uniform velocity field at large
distances from the body will be considered, the entire inviscid flow field may
be considered irrotational.

The next step is to transform the stream function, ¥, which is a function
of X, y and £, into a function of a single variable,n , which is in turn a
function of %, y and ¥. Determination of the form of § , consistent with the
condition that n be linearly dependent on &, will establish the conditions for
similarity. f is defined such that

1
U
where the prime indicates differentiation with respect to 7.

£t =

&
.

allies



The boundary conditions given by equations(ll) then become

f = ' = 0 at ¥ = O
f'—1 as y —— o,

In order to develop the correct form of 1, the relation between the old
and new stream function and n must be found. It can be seen that

3 = T = T () g (x) £ (13)

If, as was stated previously, only forms of n which are linearly dependent on
¥y are considered, then

3
§§2 = 0.
Equation (13) can be integrated to give
£(n) = LI %’_}. (14)
u_(a(x)

The requirements placed on 7 are: (1) it must be proportional to y in
order to satisfy the first boundary condition given by equation (11); (2) it
must involve Rop such that equation (10) becomes independent of the Reynolds
number; and (3) it must be a function of X and €. It is found that making q
proportional to H%T eliminates the Reynolds number dependency, and the

(Rop )
introduction of a general function, t(%, ), will be useful. Thus the form of
n is given by, 1
; Gl ” (15)
= = . 1
TSV TR z

The combination of equations (10),(12),(14) and (15) yields first for
each term in equation (10):

= = € %
Yz = U,s'f'-U,sn-g—Ef"

—, - g
o 1 LY
= = U gf' -U_ gn 3 £

-

- 1 = = -
= = ey [U.ggif+U~g'§f+U~g§inf':l

(Rop )
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vhere primes indicate differentiation with respect to the applicable variable;
which in turn yields:

(1) 1

n+1 = i-n ,n+t17 5,
LR TR L S ] LGN D
(£11) @) (e
(2) (3 s (5) i)

== y1-n l-n 2-n
- [(Uw) g g & ] n(£'")
1 (5)

As for Newtonian fluids, each term can be identified according to its
physical significance by the number under it:

(1) viscous shear stress term

(2) convective terms

(3) pressure gradient due to body shape

(4) pressure gradient due to acceleration of the free-stream

(5) inertia term due to acceleration of the boundary layer fluid

Equation (16) indicates that similarity exists if, and only if, the
bracketed factors are either constants or functions of n. Since the terms in
the brackets do not contain y they cannot be functions of n and must therefore
be constants.

The complete ordinary differential houndary layer equation and accompany-
ing general boundary conditions can be written:
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£ 4 A (et )?M L B(erer-1) (e )R = (et ) (et ) oDy ()3
f = £' = 0 when 7 = 0 (17)

£f'= 1 as N—
where A, B, C, and D are constants. The problem is now reduced to determining
the conditions for which certain body shapes, g, and velocity time histories,
Ub, satisfy the following equations:

n+1 g
_ g == 2-11 2-n °X 5
A = n (U-) ( e s>
B - @) - gn+1
[ ] n
c - Uy gl ¢ntl (18)
(ﬁw)n n
§- n
_ 7 yl-n 1.n >t ¢

The four relationships expressed in equation (18) are sufficient to deter-
mine g(xt), since U and g represent only two unknowns. As noted in reference
1, the three boundaTy conditions listed with equation (17) are sufficient to
determine the solution since the equation is a third order ordinary differen-
tial equation., On the other hand, as many as five boundary conditions were
required to solve the equation before it was transformed into similarity vari-
ables. It can be seen from equation (18) that the two additional boundary
conditions are required by the first-order differentials with respect to x and €.

Treatment of the problem has now progressed to the final state - that of
systematically seeking the various solutions to equations (18) - the results
of which will provide the conditions and resulting equations which satisfy the
similarity assumptions. The investigation will be divided into two categories:
steady and unsteady flow. '

A, STEADY FLOW:

For steady flow it can be seen that

since



and

gﬁ = 0, or & = E(x) only.

The conditions for similarity are then given by:

(B¥1 1-n _, 2-n d gn+1
A = = g g n(ntl) d %
(19)
n+1
= i-n 1 g
B = g g -
Combining the two equations in (19) gives
+1 2-n
n+l _1 oa(e™t g™
(2nl)[ A-B]-n g -
Integration yields
ST ()
& = a2 AB]x+C , (20)
where C is a constant of integration.
Upon combining equation (20) with the second of equations (19) the re-
lation between g and x is found to be, for all steady flows,
' - B
% - [ n+1 > * (21)
(21’1—1) 0.1 A—B" x + Cl

It is seen that there are two classes_of solutions to equation (20), de-

pending on whether (n+i1 3 A-B = 0 or (nt+1 > A-B % 0. The two cases will be
2n-1 2n-1

investigated separately.

n+ 1
1. <2n-1 > A-B# 0

For this case, equation (21) may bve written,

Bdx

ag _

g (2n- 1)[(n+l ) A-le x+c,

11
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which yields, upon integration,
B

(2n-l)|:<n+1]> A-B
-c, {(2 n-l)[ n+11> B }x +C } ] (22)

which, when combined with equation (20), gives an expression for &3

n+l {k2 _l)[<n+1 } - Cl}. (2n-1) < ¥> A-B ]
3 — - ' . (23)

n+l

c,

From equation (22) it is seen that this solution has an inviscid velocity
distribution of the form:

T =g =0 (+ az)m , : (2k)

where the appropriate constants are

cJamf(E) na]} IR

Q
Ll

T (2n-l)[< >A BJ (25)

ol

Tt is seen from equations(25) that o, and ¢ can be given any desired
values due to the presence of C, and C The la§t of equations (25) also
demonstrates that a value for A can be ass1gned arbitrarily, since B can be
varied to give a desired value of m.



It is convenient to let A = 1 in this case. Equations (25) are then
solved for B, C v and Cz in terms of the constants in the velocity distribution:

m(n+1
B = lim(2n-1

a. (n+l)
c. = =2
1 l+m(2n-15
n+l -m
C, = o,lm 2n-1):| .

Substitution of these expressions into equations (15), (17), (22) and
(23) allows the first differential equation and boundary conditions, together
with the appropriste velocity distribution and similarity transformation, to
be written. One restriction is made at this point; that is, the singular
point

1

m o= -y

is excluded and will be considered as a separate case. Therefore, for the
inviscid velocity distribution,

T - o G+ (t -zt

grev o+ g(err)® 0 - [——(—Tiﬁgr)l_l)](f'f'-l)(f")l'n -0

£ = £' = 0 at =0 (26)
Solution
#
f' i l as T‘ — 9
where
2
R 2-n n+l
n= 5| % % [1+m(2n-1)] )
1+m(n-2)
n(n+1) (x+a2 )

13
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These equations can be solved numerically to provide similar solutions for this
family of flows.

For the case of m = - 1 , it can be seen from the third of equations
2n-1

n+ 1l p
<2n-l >A =0,

which implies that A = O and, therefore, that B is arbitrary. Then equation
(23) gives an expression for ¢, after substitution and manipulation:

(25) that

T 1
_ | -Bn (2n-1 - 2n-1
: _Il:_—_—'gn_]n o+ o)™
al .

In order to avoid problems with imaginary numbers, B is chosen to be

2-n
1

|a1|2—n

The velocity distribution for this case is

a
= 1
v o= L
(}-( + az) 2n-1
where
. 2
B = -
IC‘ |2-n
1
a2
_ 1 2
c, = l Iz_n . (2n-1)
a
1
12-n 2n-1
c,= @ [ (2n-l)] .
2-n



Substituting in equations (15) and (17) gives for flows of the following

inviscid velocity distribution:

[0
= 1
U = T 3’
x + ) 2n-
o 2-n
gt 2—— (erea)(e)' T - o
ler, |
f = f£' = 0 at =0
f'-1 as n —= ™,
where 1
n+1

n(2n-1) (3, y2n-1

AN
n+l 2n-1
2. B A-B = A= <n+l B

This condition reduces equation (21) to

Combining equations (20) and (28) gives the expression for & to be

RS

(27)
Solution

(28)

(29)

15
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Equation (28) shows that this solution is valid for velocity distributions of
the following type:

—_ az x
U = q¢e ; (30)
where
B
c. = 2
1 o,
C = C!l .
Equation (29) can then be written gs
_ 2- -
n B n+l - n+1> Q, *
E = < 2-n e .
@, o

If g, is restricted to values greater than zero and B is chosen to be
a2/|a2| (since B is arbitrary for the reason previously stated) no generality
is lost and the problem of imaginary numbers is avoided. Thus for inviscid
velocity distributions given by:

Solution

#3

£rino+ 1—,—22 [% £(er )30 - (ere -1)(f")“n} =0 (31)
2

where




B. UNSTEADY FLOW

It is convenient to divide the investigation of similarity for time-

dependent flows into two cases; flows with streamwise velocity gradients, and
flows without streamwise velocity gradients,

1. Unsteady Flow with Streamwise Velocity Gradients

It can be seen that this choice leads to the conclusion that
all of the constants defined by equations (16) are non-zero, since g' as well

as & , is non-zero. Upon combining the second and third of equations (18),
it is seen that,

- £ & =c, (32)

where C, is a constant which will be evaluated later. Integration of the ﬁu
term of equation (32) gives,

- 1
T = — ,
- . _ ¢z (33)
and, similarly, the g term of equation (32) can be integrated, with the result,
C,B _
g = §5— % + C6 . (3%)

Combining equation (34) with the third of equations (18) gives the following
expression for &:

1

c 5T
e = | &, -¢, )" (C—SE * °s>n'1 . (35)
y

Equations (33) and (34) can be combined to give the inviseid
velocity distributions for which this solutions exists:

17



where

oz1 = C6 oz3 = 05
_ B . c
@ = T Gy = My .

If the above relations are substituted in equations (18) the
following relations for A, C, and D in terms of B are found to be:

2n
A = =T B

a
c = —+4 B
@,
a
n-2 4

B is again arbitrary and is chosen equal to 1. Thus for the
following inviscid flow:

a, + o, x

- 1 2
v =.——— , (36)
a; - a, t Solution

frey 4 H%% f(f!l)z-n - (flfl_l)(fll)l_n

Q

4 n- r1y2-n
T (E)

°l

Qy 1-n
= — (f'- e -
O12( () _

£ = £f' = 0 at 7 = 0
f'-»l as T]——»C ’
1
where ot
- c, Ron
n=v -\2-n - n-1 .
(oz3 - o t) (@, x + o )

18



2. Unsteady Flow without streamwise velocity gradients (flat plates
at zero angle of attack)

The case of no streamwise velocity gradients gives g = 1 and
g' = O,which reduces equations (18) to the following:

P L NG B G
n(n+1)
B = 0
TJ"
c = l © n+1l
n (I_]., )n §
p - @)™ (°+1) £.

It is possible to consider the time dependency of the boundary layer both
with and without a time dependent inviscid flow. This is done by considering

. —_ —t
two cases; that of T' =0 and i % 0*
4 (]
i |
a. U = 0
(-]

For this case, ?. = l_and C = 0. 1Integrating the expres-
sions for A and D with respect to x and t, respectively,

1 n+1 _ _

ST ¢ = Ax + T(E) (37)
1 n+1 _ _

m 3 = Dt + X(X) .

Equations (37) combine to give:

Ax - X(x) = pE -T(E) = cC ,
or 7
™) = DE - C
7
and
X(x) = Ax - c7 .

19
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Substitution of these results into either of equations (37) gives an expression
for &:

1

) ) ar1
£ = [n (n+1) (Ax + DE -07)} . (38)

Two of the constants in equation (38) will be required to satisfy the two pos-
sible additional boundary conditions; therefore, one will be arbitrary. A
value of D = 2 will be assigned. It should be noted here that the special
case of D = O reduces to a special case of Solution #l. Equation (38) can
then be written:

b

e = [n (1)(2)(a, % + £ +o )] wr (39)

where

o= 3z S

Therefore, for inviscid flow fields of the type:

T = 1,
P14 D 0‘1 ¥ (f.,)z-n + 21 (fn)Z—n = 0
(ko)

£ = f' = 0 at n = 0 Solution

f'—1 as M—,
where 1

R
- [ °n ] o+l
Tl = y - - - .
2n(n+l)(a1 x + &+ oaq )

!
b. T £ 0

Combining the expressions for C and D yields



D+ (1-n)C = 1 d(U. ¢ R
n(l + n) af
and after integration gives
(A S n(l+n){ [D + (1-n) c] T+ cs} . (41)

If equation (41) is substituted into the expression for C,an ordinary differen-
tial equation for the velocity distribution results:

- _c o
(n+1) {[D + :(1_n) C]T-:_'_(%L : (2)

'C:l | .Ctl

which can be integrated for each of two cases; that of D + (1-n) C = O and
D+ (1-n)C§O0. IfED+ (1-n) C# O,

Cc
{1+n) [D+ (i-n) C)

T, = c, {[D + (1-n) C] £ + ce} s> (43)

and if D = 2 is chosen arbitrarily, the velocity distribution is given in
general by:

== m
U=a1(£+a2),
where
m
a = 09 [2 + (1-n)C]
C8
@, = —— ——
2 + (1-n)C
c
m =

(1+n)té+ (1-n)c] )

It can be seen that A = O since the expression for & is independent of x, and
A is proportional to gi. This solution can be written, for inviscid flow fields
of the type: '



22

2m(n+1)

frre -l_—m(m)—(l—_n) (f'—l)(f")l_n + 2 (f")z-n = 0

f = £' = 0 at n = O
ftle—1 as M —=oo ,
where 1
n+1

1-m(1+n)(1-n) o ° Rop ]

n= 3
2n(n+l) ({ + az)l-m (l-n)J

If D+ (1-n) C = 0, equation (42) can be solved to give

t
= n+1) C
Uw = C10 e 8
or,
U = aleazt,
where
a1= clo a =L
2 (n+1)Cg

If C is chosen to be az/ |a2| » the expression for & is written,

which gives, for the inviscid flow field,

)
Solution

(k5)



- 2
u = a, e s
a> 1-n
prer | (' - 1) (f") = 0 (,'"6)
azl Solution
f = £f* = O at n = 0
f'—=1 as M —= o ,
where
1
- Ro, a ol
no=3 | o |%e] ]
04 -
n (al e Z'E )nl
DISCUSSION

A discussion of each of the seven sets of conditions which produce similar
boundary layer solutions is now possible. The primary motivation is that of
relating the requirements for similarity to physically real flows. In some of
the cases the relation is exact; in others the relation is only approximate and
the usefulness of application to real flow cases will depend on the cleverness
of the user.

Each solution is, of course, a generalization of the Newtonian case. It
is interesting to note that the same number of similar solutions exist for
power-law fluids as for Newtonian fluids. Detailed investigation of each
solution may, however, show restrictions on the range of values of n for which
similar solutions exist - a different range than that given by consideration of
the boundary layer approximations.

Some unusual limitations of the boundary-layer theory should be noted
at this point. The form of Roy,

o USTL?
- P |
Ron - K

states that, for values of n < 2, Ro, can be made sufficiently large by in-
creasing U. If, however, n > 2, there is an upper limit on Uy for making Ro,
sufficiently large. There is also a lower limit on Uy for n > O because the
power-law formulation is not valid for most fluids at low values of du/dy.
Although it appears that there is some range of Uy where the boundary layer
approximations are valid for n > 2, the limitations probably restrict use of
the theory to values of n < 2.
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As was noted earlier, five boundary conditions are required to define a
similar solution, in general., Three boundary conditions were provided initially,
as characteristic of all boundary layer problems, The remaining boundary con-
ditions, if required for a particular solution, are found as constants of inte-
gration in the expression for &. These extra boundary conditions are, therefore,
related intimately to the physical system considered and will be discussed as

such.

Numerical analysis of each solution will provide unique values of £' for
values of 7 equal to and greater than zero, for selected values of n. This
mekes possible the definition of a boundary layer thickness, &, which is de-
fined as the value of y when f' has reached an arbitrary percentage of unity.
For example, if the value of f' is chosen to be 0.99, then,

£' (ng) = 0.99
where Mg, is the value of nat y = 5 and £' = 0.99. 5 can then be written as,

ng 8(x,%)

L
(Rop) B+

It should be noted in passing that this expression shows the boundary layer

thickness to be inversely proportional to _%1 rather than the more
n

1
familiar (Ro,)? for the special case of Newtonian flow.

Solution #1

Equation (26) represents a generalization of a family of solutions for
Newtonian fluids first deduced by V. M. Falkner and S. W. Skan (reference 2)
and later investigated in detail by D. R. Hartree (reference 11). The several
types of inviscid velocity distributions probably have the most useful physical
applications of all of the similar solutions for Newtonian fluids. The same
application to physical flows is found for non-Newtonian fluids. As was
mentioned earlier, Solution #1, as well as Solutions #2 and #3, represent a
generalization of the steady flow solutions stated recently by Showalter for
power-law fluids.,

Since @, only serves to translate x from the origin, Q, can be set equal
to zero without a loss of generality. This also satisfies the initial bound-
ary condition: 8 = O when X = 0 and U = 0. For g, > O the equation for U is
a generalization, for power-law fluids, of the Falkner-Skan wedge flows. Dis-
cussion of the various inviscid flow fields can be facilitated by rewriting
the expression for U and the differential equation, together with expressions
for n and ® :

m

T = o (),



m(n+l)

provo4 f(f!l)z_n - Tro(ZoT) (f‘fl_l)(fll)l-n = 0

1
2-n n+l
(Roy) [L+n(2n-1)] o
=y T m(n-2) +1
n{n+1)(x)
1
-\m(n-2)+1 n+1
5 = ng ‘n(n+l) (x) () .

Ro, [l+m(2n;1)]a1

The general case of 0 < m < 1 physically represents the potential flow in the
neighborhood of the stagnation point of a wedge. Potential theory (reference
12) gives the relation between the full wedge angle 7B, and the power of the
velocity distribution, m:

o
=

B:

n
=]

From the previocusly given definition of the constant B:
5 - m(n*l)
" 1l+m(2n-1)
the relation between g and B can be found in terms of m and n;

2B
B = 1) + B(2-20) -

This is seen to reduce to g = B for Newtonian fluids.

The flow over a flat plate at zero incidence is obtained if m = O, where
B=0and 0= ¢; . This problem has recently been investigated numerically
for power-law fluids by Acrivos et. al. (reference 10). It is interesting _1
to note that the boundary layer thickness grows in direct proportion to (x)8¥T
compared to x2 for Newtonian fluids. Thus, for pseudoplastic fluids (n < 1)
® would grow mich faster with X than it would for Newtonian fluids, other con-
ditions being equal.
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For m = 1 it is seen that g = 1 and U= o} x which is the physical case of
stagnation flow for all values of n, A significant characteristic ofnt?is
solution is the variation of &, which is directly proportional to(i) 551

Again using the example of pseudoplastic fluids, & decreases with increasing x
for O<n< 1. For n> 1, & increases with increasing x. & is either infinite
(or finite for ap # 0) or zero at x = 0, depending on whether 0 < n <1 or

n > 1, respectively. Comparatively, the x- dependence of & disappears for
Newtonian fluids.

The case of m = 1 and'az >0 should be mentioned., This results in an in-
viscid velocity distribution of the type:

where a,> a x and a_ > 0. This corresponds physically to flow in a straight
channel followed by & divergent channel,

Solution #2

The séiution given by equation (27) is also a generalization of one of
the Falkner-Skan cases. Again ¢, can be set equal to zero without a loss of
generality since the term amounts to a translation of the X coordinate:

R
_ 2n-~
(x)
(a )2—n
£y 4 __l_z_n (fff!_l)(fn)l"n =0
|o -

1
1

_ n+1
- 2 Roglan| 27" °
n=y T

n(2n-1)(i)2ﬁ:T

n+1
n(2n-1)(z)** 1

2-mn
|

2 R°n |a



For Newtonian fluids, the inviscid velocity distribution_is that of either a
source or a sink, depending on the sign of x, and hence U. No general state-
ment can be made relating the inviscid velocity distributions for Newtonian
fluids to potential theory. Practically, the general expression for U approxi-
mates flow in diverging or converging curved channels. The special case of
Newtonian fluids approximates a diverging or converging channel with straight
walls. This can be only an approximation because the solution requires that
U and d=C (for n < 5) as x—0 and these conditions are not satisfied

in a real channel where the inviscid velocity is finite at x = 0. When
applied to flow in channels the solution becomes more accurate as X increases.

Solution #3

Equations (31) describe the generalization of a seldom-discussed Falkner-
Skan solution. It can be seen that values of ¢, other than unity translate
the X origin, therefore no generality is sacrificed if o, is set equal to
unity and: =
azx
T = e

frve g _lgil_ l:% f(fn)z-n - (flfc_l)(f|')1—n] = 0
2
(2-n) o, X H%T

_ | Ron Iaz |e
y n

n+i1
n

3 = qa
Ron(ag) e(Z-H)(az)i .

Any application of this solution to a physical flow must satisfy the initial
conditions

1

5 2 =
=1
° R, ()
at x = 0, where
()
R
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This can be compared with the case of stagnation flow for Solution #1, in
which:
1

5 = ,,5[ (n+1) (&)°* ]ETI ’

2-n
2 R, (o)
n

where

_ [ &
% <'di >.§ = 0 ’

For Newtonian fluids, where both cases lack an x-dependence, there exists the
possibility that the two solutions can be matched at some point downstream of
the stagnation point. This may also be true for the more general case of
power-law fluids; however, further investigation and numerical analysis is re-
gquired to determine how well the solution represents a physical situation.
Certainly such a match of solutions would not produce an exact representation
at the origin, but may become sufficiently accurate as x increases from the
origin,

Solution #
The solution for unsteady flow giveg by equations (36) cen be rewritten
by again letting Qs the translation of x, go to zero with no loss of generality:

X
aZ

o, -au’c'

Fror o4 Egi f(flt)z-n_(ftfl_l)(f|l)l-n

04 [0/
= M (et veyl-n_ "% B-2 11)2-n
- e @)

1
(o7 ROn n+1

| r\2-1 -\n-1
(az-akt) (azx)




(0,-0, 81 (@]
a3 au a2
a? RO
n

5 = ns

These equations, for Newtonian fluids, were investigated and reported recently
by Yang (reference 12).

Tt should be noted that & is a function of both ¥ and X, in general; but
it is a function of t only for Newtonian fluids. As for the steady flow stag-
nation solution, 5 decreases for increasing x for O<n<l, and increases for in-
creasing x for n>l.

The inviscid velocity distribution is that of a stagnation flow with a
hyperbolic history. The significance of this type of unsteady flow can be
shown by first noting that this type of flow will result when the forces act-
ing on the body are proportional to the square of the velocity:

au
—Poc F .
at e

It can be seen that this type of velocity history will result when all the
forces acting on the body are forces which obey the simple quadratic resis-
tance law, Specifically, for the case of non-lifting bodies in which the
drag force predominates the acceleration is approximately as follows:

2| &
8

I

}0‘3
ol

Solution # will very closely approximate this physical case if the drag coef-
ficient and the density are constant or slowly varying.

Solution #5

Equations (40) give the general solution for a flat plate at zero incidence
moving with a constant velocity in its own plane. Since the term associated
with inertia due to the accelerating boundary layer fluid is retained, the physi-
cal situation must be that of a transient boundary layer trying to adjust to new
steady state conditions. The initial condition of & = O for x = £t = 0 can be
satisfied by setting o, equal to zero. The problem can be simplified consider-
ably by eliminating the X dependence of 3 (letting oy = O). Since this elimi-
nates the convective term, the solution corresponds physically to the case of
an impulsively moved infinite flat plate or a finite plate at the first instant
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of motion and is, for Newtonian fluids, the classical Rayleigh problem. This
can be written:

U =1
Frev 4 o n(frt)a‘n = 0
=2
R n+1
- Oon
n = T
2n (n+1)%
2
n+1
2n (n+l)%
o on |[EE]
[¢)
n

The more general case for Oy # O retains the convective term and therefore
corresponds to a finite flat plate,with its leading edge at X = O,impulsively
put into motion in its own plane., This situation is given by:

U =1
P14+ 2y lf(f.,)Z-n + 27 (fy.)Z-n = 0

_ Ro n+1
"o [2n(n+l)(:1i + ) ]

1

2n(n+l)(a1i + t) n+l

s R :
o]
n

¢4
It

Solution #6

Equations (4%) describe an inviscid flow with a power-law velocity history.
§ince e again corresponds only to a displacement of a coordinate, in this case
t, it can be set equal to zero with no significant loss of genmerality:

T = o ()N (£ >0)




frero_ l-i?{i;%zl-n) (fl_l)(fl[)l'n + 21](f")2-n =0

1

n+1
_ J-mat1)(1-n)] a, ' Rop
k 2n(n+1)(8)m(2-0)
1
on(n+1) (£ )1 2(1-0) n+l
5= 74 : .

[1-m(a+1)(1-n) Jo, " Ro

Since no convection terms are present, the solution again applies to an
infinite flat plate or a finite plate at the first instant of motion.

The initial condition, & = O at X = O is satisfied exactly for infinite
plates. It 1s interesting to note that for m = O, the problem is identical to
that of the special case of Solution #5 where aiand O, = 0, the case of the
impulsively moved plate at a constant velocity.

Solution #7

The solution described by equations (46) also applies to an infinite
flat plate moving in its own plane, since no convection terms are present. The
inviscid velocity history is a simple exponential curve and Q; can be set
equal to unity since it corresponds to a displacement of the time scale. The
conditions of the solution can be rewritten:

_ ot
U

(o4
froyo_ az (fv_l)(ft|)1-n = 0
| 2|

R0 a2 n+l
n = 3 -
1
n(e%2 T )?
2
1
n(eaz t y-t n+
5 = n6

R o
o, |2l

The boundary layer thickness is seen to be finite at t = O for all values
of n. ® is seen to be constant for Newtonian fluids.
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CONCLUSIONS

The following conclusions have been made as a result of investigating the
two-dimensional, laminar, incompressible boundary layer equation for purely
viscous, power-law non-Newtonian fluids:

1l. The solutions found for steady and unsteady flows are generalizations
of the solutions found by Fenter for Newtonian fluids. The number of similar
solutions is found to be the same as for Newtonlian fluids.

2. With regard to the steady flow solutions found, all are generalized
versions of the Falkner-Skan flows for Newtonian fluids. Solutions #l, #2,
and #3 are generalized versions of similar solutions for power-law fluids
investigated by Schowalter.

3. Solution # is found to represent a stagnation flow with a family of
flow h}stories. The boundary layer thickness is seen to be a function both of
x and T for the general case, where & is a function of t only for Newtonian
fluids.,

4. Solution #5 represents the flow over a flat plate at zero incidence,
moving at a constant velocity, in which the transient boundary layer is trying
to adjust to new steady state conditions. The solution includes as special
cases the flows over an infinite and semi-infinite flat plate impulsively put
into motion in their own planes.

5. Solution #6 describes a flow with a power-law velocity history over an
infinite flat plate.

6. Solution #7 represents flow over an infinite flat plate moving in its
own plane. The inviscid velocity history is an exponential function. The
boundary layer thickness is found to be a function of time for the general case,
where it is constant for Newtonian fluids.
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